Electronically excited states of vitamin B12: benchmark calculations including time-dependent density functional theory and correlated ab initio methods.
نویسندگان
چکیده
Time-dependent density functional theory (TD-DFT) and correlated ab initio methods have been applied to explore the electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). Different experimental techniques have been used to probe the excited states of CNCbl, revealing many issues that remain poorly understood from an electronic structure point of view. Due to its efficient scaling with size, TD-DFT emerges as one of the most practical tools that can be used to study the electronic properties of these fairly complex molecules. However, the description of excited states is strongly dependent on the type of functional used in the calculations. In the present contribution, the choice of a proper functional for vitamin B(12) was evaluated in terms of its agreement with both experimental results and correlated ab initio calculations. Three different functionals, i.e., B3LYP, BP86, and LC-BLYP, were tested. In addition, the effect of the relative contributions of DFT and HF to the exchange-correlation functional was investigated as a function of the range-separation parameter, μ. The issues related to the underestimation of charge-transfer excitation energies by TD-DFT were validated by the Λ diagnostic, which measures the spatial overlap between occupied and virtual orbitals involved in the particular excitation. The nature of the low-lying excited states was also analyzed based on a comparison of TD-DFT and ab initio results. Based on an extensive comparison with experimental results and ab initio benchmark calculations, the BP86 functional was found to be the most appropriate in describing the electronic properties of CNCbl. Finally, an analysis of electronic transitions and reassignment of some excitations were discussed.
منابع مشابه
An Ab initio and chemical shielding tensors calculations for Nucleotide 5’-Monophosphates in the Gas phase
Structural and magnetic properties of purine and pyrimidine nucleotides (CMP, UMP, dTMP, AMP, GMP, IMP) were studied at different levels of ab initio molecular orbital theory. These calculations were performed at the hartree-fock level and density functional B3LYP methods. Geometries were fully optimized by following Cs symmetry restrictions. The standard 6-31G** basis set which includes polari...
متن کاملCorrelated Ab Initio and Density Functional Studies on H2 Activation by FeO(.).
The reaction FeO(+) + H2 → Fe(+) + H2O is a simple model for hydrogen abstraction processes in biologically important heme systems. The geometries of all relevant stationary points on the lowest sextet and quartet surfaces were optimized using several density functionals as well as the CASSCF method. The corresponding energy profiles were computed at the following levels: density functional the...
متن کاملA hybrid density functional theory (DFT) and ab initio study of α-Acyloxycarboxamides Derived from Indane-1, 2, 3-trione
α-acyloxycarboxamides are synthesized from three component Passerini reaction between indane-1,2,3-trione, isocyanides, and thiophenecarboxylic acids in quantitative yields. The structures of the final products were confirmed by IR, 1H and 13C NMR spectroscopy, mass spectrometry, and elemental analysis. The B3LYP/HF calculations for computation of 1H an...
متن کاملExcited-State Electronic Structure with Configuration Interaction Singles and Tamm–Dancoff Time-Dependent Density Functional Theory on Graphical Processing Units
Excited-state calculations are implemented in a development version of the GPU-based TeraChem software package using the configuration interaction singles (CIS) and adiabatic linear response Tamm-Dancoff time-dependent density functional theory (TDA-TDDFT) methods. The speedup of the CIS and TDDFT methods using GPU-based electron repulsion integrals and density functional quadrature integration...
متن کاملAmino acids interacting with defected carbon nanotubes: ab initio calculations
The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 115 7 شماره
صفحات -
تاریخ انتشار 2011